Digital Circuits

ECS 371

Dr. Prapun Suksompong

prapun@siit.tu.ac.th

Lecture 5-6

Office Hours:

BKD 3601-7

Monday 1:30-3:30

Tuesday 10:30-11:30

ECS371.PRAPUN.COM

Announcement

- Iscanned the questions for HW1 and posted them on the course website.
 - Use it if you haven't obtained the textbook.
- Need to do something about the office hours.
- The old office hours
- Monday 1:30-3:30PM: Conflict with ITS325, MAS210
- Tuesday 10:30-11:30AM: Conflict with ITS221
- Let's add
- **✓•** Monday 9:00-10:30 **←**
- I'm not limited to these time slots.
 - Usually in my office (BKD3601-7) from 8AM-5PM

Problem Set 1

• Chapter 2

6, 9, 13, 19, 20, 22, 25, 28

• Chapter 3

6, 8, 16, 20, 23

- Due date: June 25)2009 (Thursday)
- Please submit your HW to the instructor 3 minutes BEFORE your class starts.
 - Late submission will not be accepted.
 - Earlier submission is possible. There are two HW boxes in the EC department (6th floor) for ECS 371. (One for CS. Another one for IT.)

Question

• How many people will participate in the SIIT day activities during our class time on Thursday?

Review

Draw the logic circuit represented by

$$X = A \cdot B$$

$$X = A + B$$

$$X = A \cdot \overline{B}$$

$$X = A \cdot B$$

$$\begin{array}{ccc}
X = A \cdot B \\
\text{(NAND)} & & & & \times \\
& & & & & \times
\end{array}$$

Remark

• Precedence: $A + B \cdot \overline{C} \text{ is the same as } A + \left(B \cdot \overline{C}\right)$ $A + B \cdot \overline{C} \text{ is NOT the same as } \left(A + B\right) \cdot \overline{C}$ $A \cdot \overline{B} \text{ is NOT the same as } \overline{A \cdot B}$

Truth Table

Example: Find the value of *X* for all possible values of the

variables when

Proving Identities/Rules/Laws

Example: Check that

$$AB + A(B+C) = A(B+C)$$

Method 2: Use Truth Table										~		
	Α	В	С	AG	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Á(I	B+C)	A	(6	+()	
				0	10	0	0			10		
	0	0	0			0	Ā					
	0	0	1	0			7			0		
	0	1	0	0	0	0	1			 0		
	0	1	1	0	0	0	1	=	_	0		
	1	0	0	0	0	O	0			0		
	1	0	1	0	1	1	1			1		
	1	1	0	1	1	1	1			1		
	1	1	1	1	11	1	1			1		
•			-	1	<u></u>				•	1	!	

Comparison

For ECS371, make sure that you know **both** method. Later, we will use another method (K-map).

Principle of Duality

Any theorem or identity remains true if $0 \leftrightarrow 1$

Example:

$$\bullet \longleftrightarrow +$$

$$X + 1 = 1 \qquad X + X = 1$$

$$X \cdot 0 = 0 \qquad X \cdot \overline{X} = 0$$

Caution:
$$X + (X \cdot Y) = X$$

$$\times \cdot (\times + \curlyvee) = X$$

Parenthesize an expression fully before taking its dual!

$$(X \cdot Y) + (X \cdot Z) = X \cdot (Y + Z)$$

$$(X + Y) \cdot (X + Z) = X + (Y \cdot Z)$$

Duality Principle in Action

(T10')

$$X \cdot Y + X \cdot Y = X \longrightarrow$$

 $X \cdot Y + X \cdot Y' = X$

$$(X+Y)\cdot(X+\overline{Y})=X$$

 $(X + Y) \cdot (X + Y') = X$

(Combining)

(T6)

(T7)

(T8

(T)

DeMorgan's Theorem

Part 1: $\frac{A_1 \cdot A_2 \cdot \cdots \cdot A_n}{A_1 \cdot A_2 \cdot \cdots \cdot A_n} = \frac{A_1 + A_2 + \cdots + A_n}{A_1 \cdot A_2 \cdot \cdots \cdot A_n}$

Part 2:

$$\frac{A_1 + A_2 + \dots + A_n}{A_1 + A_2 + \dots + A_n} = \frac{A_1 \cdot A_2}{A_1 \cdot A_2} \cdot \dots \cdot \frac{A_n}{A_n}$$

Example:

$$X \text{ NAND } Y = \overline{X \cdot Y} = \overline{X} + \overline{Y} \text{ (Negative-OR)}$$

 $X \text{ NOR } Y = \overline{X + Y} = \overline{X} \cdot \overline{Y}$ (Negative-AND)

$$\begin{array}{c}
X \\
Y
\end{array}$$

$$\begin{array}{c}
X \\
Y$$

$$Y$$

$$\begin{array}{c}
X \\
Y$$

$$Y$$

Negative-OR

X. Y. Z

Play with the bubbles

Recall that each bubble means a "NOT" operation.

- 1. You can create a pair of bubbles out of nothing and move them freely on the wire.
- 2. DeMorgan's Thorem: When you move bubble through the AND gate or the OR gate, the gate changes.
- 3. If you want to leave an isolated bubble in your final design/answer, write an actual inverter instead of a bubble.

→ -1>0- is not a gate

→ -1>0- is a NOT gate

Product Term

A single literal or a product of two or more literals.

Example:
$$A \cdot \overline{B} \cdot C$$
 $A \cdot C$
 $A \cdot \overline{B} \cdot C \cdot D$
 $\overline{A} \cdot \overline{B} \cdot \overline{C}$

Caution:

$$A \cdot B \cdot C$$
 is not a product term.

with of the plement A = 1A

(A, B, C) = (1,0,1)