Digital Circuits ECS 371

Dr. Prapun Suksompong

 prapun@siit.tu.ac.thLecture 5-6
Office Hours:
BKD 3601-7
Monday 1:30-3:30
Tuesday 10:30-11:30

Announcement

- Iscanned Re questions for HW1 and posted them on the course website.
- Use it if you haven't obtained the teyoor
- Need to do something about the office hours.
- The old office hours
- Monday 1:30-3:30PM: Conflict with ITS325, MAS210 Tuesday 10:30-11:30AM: Conflict with ITS221
- Let's add
$ノ$ Monday 9:00-10:30 \longleftarrow
- I'm not limited to these time slots.
- Usually in my office (BKD3601-7) fror 8AM-5PM

Problem Set 1

- Chapter 2

$$
6,9,13,19,20,22,25,28
$$

- Chapter 3

$$
6,8,16,20,23
$$

- Due date: Jun 252009 (Thursday)
- Please submit your HW to the instructor 3 minutes BEFORE your class starts.
- Late submission will not be accepted.
- Earlier submission is possible. There are two HW boxes in the EC department ($6^{\text {th }}$ floor) for ECS 371. (One for CS. Another one for IT.)

Question

- How many people will participate in the SIIT day activities during our class time on Thursday?

Review

Draw the logic circuit represented by

$$
X=A \cdot B
$$

$$
X=(A+B) C+B
$$

Remark

- Precedence:

Truth Table

Example: Find the value of X for all possible values of the variables when

$$
\begin{aligned}
& X=(A+B) \stackrel{C}{C}+B \\
& \begin{array}{ll|l}
\\
A+B & C \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
& & \\
& & x
\end{array}
\end{aligned}
$$

$\left\{\begin{array}{|c|c|c|}\hline A & B & C \\ \hline 0 & 0 & 0 \\ \hline 0 & 0 & 1 \\ \hline 0 & 1 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 0 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 0 \\ \hline 1 & 1 & 1 \\ \hline\end{array}\right.$

Proving Identities/Rules/Laws

Example: Check that

$$
A B+A(B+C)=A(B+C)
$$

Method 1: Use Algebraic $\overbrace{B+A(B+C)}^{\text {Manipulation }}$
$=A B+A B+A C$
$=A \cdot B+A C$
$=A(B+C)$
Method 2: Use Truth Table
$A B+\widehat{A(B+C)}$

Comparison

	(1) Algebraic Manipulation	2 Iruth Table
Advantage	- Quick (usually) - Simple	-Straightforward
Disadvantage	- Need to remember many rules/laws. - Need to know when to apply them.	-Tedious/Boring/Ti me-wasting

For ECS371, make sure that you know both method.

Principle of Duality

Any theorem or identity remains true if $\quad 0 \leftrightarrow 1$
Example:

$$
\begin{array}{ccr}
\boldsymbol{\imath} & & \bullet \leftrightarrow+ \\
X+1=1 & X+\bar{X}=1 & \\
X \cdot 0=0 & X \cdot \bar{X}=0
\end{array}
$$

Caution: $\quad X+(X \cdot Y)=X$
$\mathbf{X} \cdot(\mathbf{X}+\mathbf{Y})=\mathbf{X}$
\longrightarrow

- Parenthesize an expression fully before taking its dual!

$$
\square(X \cdot Y)+\left(X_{\mathfrak{j}} Z\right)=X_{\mathfrak{j}}(Y+Z)
$$

Duality Principle in Action

DeMorgan's Theorem

Part 1:

$$
\left.\begin{array}{l}
\frac{\downarrow}{A_{1} \cdot A_{2} \cdots \cdot A_{n}}=\overline{A_{1}}+\overline{A_{2}}+\cdots+\overline{A_{n}} \\
\frac{\downarrow r^{\prime}+A_{2}+\cdots+A_{n}}{A_{1}}=\frac{\downarrow \downarrow}{A_{1}} \cdot \frac{\downarrow A_{2}}{l} \cdot \overline{A_{n}}
\end{array}\right\}
$$

$$
\uparrow \uparrow \uparrow
$$

Example:

$$
\begin{array}{rlrl}
X \text { NAND } Y & =\overline{X \cdot Y}=\bar{X}+\bar{Y} & (\text { Negative-OR }) \\
X \text { NOR } Y & =\overline{X+Y}=\bar{X} \cdot \bar{Y} & & (\text { Negative-AND })
\end{array}
$$

Play with the bubbles

Recall that each bubble means a "NOT" operation.

1. Dou can create a pair of bubbles out of nothing and move them freely on the wire.
2.) Morgan's Theorem: When you move bubble through the AND gate or the OR gate, the gate changes.
3.) you want to leave an isolated bubble in your final design/answer, write an actual inverter instead of a bubble.

$$
\begin{aligned}
& \text { O- is not a gate } \\
& \rightarrow-1>0 \text { is a NoT gate }
\end{aligned}
$$

This does

A
3
\downarrow ar ming.
 Grand

Product Term

A single literal or a product of two or more literals. ς

Example: $A \cdot \bar{B} \cdot C$

$$
\begin{aligned}
& A \cdot C / \\
& A \nearrow
\end{aligned}
$$

$A \cdot \bar{B} \cdot C \cdot D$
$\bar{A} \cdot \bar{B} \cdot \bar{C}$
Caution:
$\overline{A \cdot B \cdot C}$ is not a product term.
$Q:$ When does $A \cdot \bar{B} \cdot C=1$?
plement $A=1$

$(A, B, C)=(1,0,1)$

